Bullet Collision Detection & Physics Library
btCapsuleShape.h
Go to the documentation of this file.
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #ifndef BT_CAPSULE_SHAPE_H
17 #define BT_CAPSULE_SHAPE_H
18 
19 #include "btConvexInternalShape.h"
21 
22 
27 {
28 protected:
29  int m_upAxis;
30 
31 protected:
33  btCapsuleShape() : btConvexInternalShape() {m_shapeType = CAPSULE_SHAPE_PROXYTYPE;};
34 
35 public:
36 
38 
39  btCapsuleShape(btScalar radius,btScalar height);
40 
42  virtual void calculateLocalInertia(btScalar mass,btVector3& inertia) const;
43 
45  virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const;
46 
47  virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const;
48 
49  virtual void setMargin(btScalar collisionMargin)
50  {
51  //don't override the margin for capsules, their entire radius == margin
52  (void)collisionMargin;
53  }
54 
55  virtual void getAabb (const btTransform& t, btVector3& aabbMin, btVector3& aabbMax) const
56  {
57  btVector3 halfExtents(getRadius(),getRadius(),getRadius());
58  halfExtents[m_upAxis] = getRadius() + getHalfHeight();
59  btMatrix3x3 abs_b = t.getBasis().absolute();
60  btVector3 center = t.getOrigin();
61  btVector3 extent = halfExtents.dot3(abs_b[0], abs_b[1], abs_b[2]);
62 
63  aabbMin = center - extent;
64  aabbMax = center + extent;
65  }
66 
67  virtual const char* getName()const
68  {
69  return "CapsuleShape";
70  }
71 
72  int getUpAxis() const
73  {
74  return m_upAxis;
75  }
76 
78  {
79  int radiusAxis = (m_upAxis+2)%3;
80  return m_implicitShapeDimensions[radiusAxis];
81  }
82 
84  {
85  return m_implicitShapeDimensions[m_upAxis];
86  }
87 
88  virtual void setLocalScaling(const btVector3& scaling)
89  {
90  btVector3 unScaledImplicitShapeDimensions = m_implicitShapeDimensions / m_localScaling;
92  m_implicitShapeDimensions = (unScaledImplicitShapeDimensions * scaling);
93  //update m_collisionMargin, since entire radius==margin
94  int radiusAxis = (m_upAxis+2)%3;
95  m_collisionMargin = m_implicitShapeDimensions[radiusAxis];
96  }
97 
99  {
100  btVector3 aniDir(0,0,0);
101  aniDir[getUpAxis()]=1;
102  return aniDir;
103  }
104 
105 
106  virtual int calculateSerializeBufferSize() const;
107 
109  virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
110 
111  SIMD_FORCE_INLINE void deSerializeFloat(struct btCapsuleShapeData* dataBuffer);
112 
113 };
114 
118 {
119 public:
120 
121  btCapsuleShapeX(btScalar radius,btScalar height);
122 
123  //debugging
124  virtual const char* getName()const
125  {
126  return "CapsuleX";
127  }
128 
129 
130 
131 };
132 
136 {
137 public:
138  btCapsuleShapeZ(btScalar radius,btScalar height);
139 
140  //debugging
141  virtual const char* getName()const
142  {
143  return "CapsuleZ";
144  }
145 
146 
147 };
148 
151 {
153 
154  int m_upAxis;
155 
156  char m_padding[4];
157 };
158 
160 {
161  return sizeof(btCapsuleShapeData);
162 }
163 
165 SIMD_FORCE_INLINE const char* btCapsuleShape::serialize(void* dataBuffer, btSerializer* serializer) const
166 {
167  btCapsuleShapeData* shapeData = (btCapsuleShapeData*) dataBuffer;
168 
170 
171  shapeData->m_upAxis = m_upAxis;
172 
173  // Fill padding with zeros to appease msan.
174  shapeData->m_padding[0] = 0;
175  shapeData->m_padding[1] = 0;
176  shapeData->m_padding[2] = 0;
177  shapeData->m_padding[3] = 0;
178 
179  return "btCapsuleShapeData";
180 }
181 
183 {
187  //it is best to already pre-allocate the matching btCapsuleShape*(X/Z) version to match m_upAxis
188  m_upAxis = dataBuffer->m_upAxis;
189 }
190 
191 #endif //BT_CAPSULE_SHAPE_H
btCapsuleShapeX(btScalar radius, btScalar height)
The btConvexInternalShape is an internal base class, shared by most convex shape implementations.
virtual const char * serialize(void *dataBuffer, btSerializer *serializer) const
fills the dataBuffer and returns the struct name (and 0 on failure)
virtual const char * serialize(void *dataBuffer, btSerializer *serializer) const
fills the dataBuffer and returns the struct name (and 0 on failure)
The btCapsuleShape represents a capsule around the Y axis, there is also the btCapsuleShapeX aligned ...
virtual const char * getName() const
btCapsuleShapeX represents a capsule around the Z axis the total height is height+2*radius, so the height is just the height between the center of each 'sphere' of the capsule caps.
#define SIMD_FORCE_INLINE
Definition: btScalar.h:81
virtual btVector3 getAnisotropicRollingFrictionDirection() const
the getAnisotropicRollingFrictionDirection can be used in combination with setAnisotropicFriction See...
btScalar getRadius() const
do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64 ...
int getUpAxis() const
do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64 ...
btVector3 & getOrigin()
Return the origin vector translation.
Definition: btTransform.h:117
btMatrix3x3 absolute() const
Return the matrix with all values non negative.
Definition: btMatrix3x3.h:1009
btCapsuleShape()
only used for btCapsuleShapeZ and btCapsuleShapeX subclasses.
virtual int calculateSerializeBufferSize() const
btMatrix3x3 & getBasis()
Return the basis matrix for the rotation.
Definition: btTransform.h:112
virtual void setMargin(btScalar collisionMargin)
btVector3FloatData m_implicitShapeDimensions
btConvexInternalShapeData m_convexInternalShapeData
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:83
#define ATTRIBUTE_ALIGNED16(a)
Definition: btScalar.h:82
virtual void setLocalScaling(const btVector3 &scaling)
The btTransform class supports rigid transforms with only translation and rotation and no scaling/she...
Definition: btTransform.h:34
virtual const char * getName() const
virtual const char * getName() const
#define BT_DECLARE_ALIGNED_ALLOCATOR()
Definition: btScalar.h:403
btVector3 dot3(const btVector3 &v0, const btVector3 &v1, const btVector3 &v2) const
Definition: btVector3.h:733
btCapsuleShapeZ represents a capsule around the Z axis the total height is height+2*radius, so the height is just the height between the center of each 'sphere' of the capsule caps.
virtual void setLocalScaling(const btVector3 &scaling)
void deSerializeFloat(struct btCapsuleShapeData *dataBuffer)
The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with...
Definition: btMatrix3x3.h:48
void deSerializeFloat(const struct btVector3FloatData &dataIn)
Definition: btVector3.h:1331
btScalar getHalfHeight() const
virtual void getAabb(const btTransform &t, btVector3 &aabbMin, btVector3 &aabbMax) const
getAabb's default implementation is brute force, expected derived classes to implement a fast dedicat...
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:292